SentimentalITsts at SemEval-2016 Task 4: building a Twitter sentiment analyzer in your backyard

نویسندگان

  • Cosmin Florean
  • Oana Bejenaru
  • Eduard Apostol
  • Octavian Ciobanu
  • Adrian Iftene
  • Diana Trandabat
چکیده

The paper presents the system developed by the SentimentalITsts team for the participation in Semeval-2016 task 4, in the subtasks A, B and C. The developed system uses off the shelf solutions for the development of a quick sentiment analyzer for tweets. However, the lack of any syntactic or semantic information resulted in performances lower than those of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adullam at SemEval-2017 Task 4: Sentiment Analyzer Using Lexicon Integrated Convolutional Neural Networks with Attention

We propose a sentiment analyzer for the prediction of document-level sentiments of English micro-blog messages from Twitter. The proposed method is based on lexicon integrated convolutional neural networks with attention (LCA). Its performance was evaluated using the datasets provided by SemEval competition (Task 4). The proposed sentiment analyzer obtained an average F1 of 55.2%, an average re...

متن کامل

SentiSys at SemEval-2016 Task 4: Feature-Based System for Sentiment Analysis in Twitter

This paper describes our sentiment analysis system which has been built for Sentiment Analysis in Twitter Task of SemEval-2016. We have used a Logistic Regression classifier with different groups of features. This system is an improvement to our previous system Lsislif in Semeval-2015 after removing some features and adding new features extracted from a new automatic constructed sentiment lexicon.

متن کامل

NileTMRG at SemEval-2016 Task 7: Deriving Prior Polarities for Arabic Sentiment Terms

This paper presents a model that was developed to address SemEval Task 7: “Determining Sentiment Intensity of English and Arabic Phrases”, with focus on ‘Arabic Phrases’. The goal of this task is to determine the degree to which some given term is associated with positive sentiment. The underlying premise behind the model that we have adopted is that determining the context (positive or negativ...

متن کامل

NTNUSentEval at SemEval-2016 Task 4: Combining General Classifiers for Fast Twitter Sentiment Analysis

The paper describes experiments on sentiment classification of microblog messages using an architecture allowing general machine learning classifiers to be combined either sequentially to form a multi-step classifier, or in parallel, creating an ensemble classifier. The system achieved very competitive results in the shared task on sentiment analysis in Twitter, in particular on non-Twitter soc...

متن کامل

VCU-TSA at Semeval-2016 Task 4: Sentiment Analysis in Twitter

The aim of this paper is to produce a methodology for analyzing sentiments of selected Twitter messages, better known as Tweets. This project elaborates on two experiments carried out to analyze the sentiment of Tweets from SemEval-2016 Task 4 Subtask A and Subtask B. Our method is built from a simple unigram model baseline with three main feature enhancements incorporated into the model: 1) em...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016